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Abstract— As robots enter human environments, they will
be expected to collaborate and coordinate their actions with
people. In order for robots to become more fluent at this,
particularly in groups, robots must be able to recognize,
understand, and anticipate coordinated human activities.
However, how robots engage in this process can influence
the dynamics of the team, particularly in multi-human,
multi-robot situations. In this paper, we investigate how the
presence of robots affects group coordination when both the
anticipation algorithms they employ and their number (sin-
gle robot or multi-robot) vary. Our results suggest that group
coordination is significantly affected when a robot joins a
human-only group, and is further affected when a second
robot joins the group and employs a different anticipation
algorithm from the other robot. These findings suggest that
heterogeneous behavior of robots in a multi-human group
can play a major role in how group coordination dynamics
stabilize (or fail to), and may have implications for how we
design future human-robot teams.

I. INTRODUCTION

Humans interact in groups in many situations in their
daily life. In group situations, activities performed by
a group member continually influences the activity of
other group members [1]. These influences can lead to
intentional or unintentional coordination of the movements
of the humans in a group. An intentional coordination of
movements may be observed in cooperative group tasks,
such as when people dance together; whereas uninten-
tional coordination may occur in non-cooperative tasks,
like people walking in a group [2], [3]. Humans are skilled
at coordinating their movements in group situations.

Along with technological advancements, robots are now
becoming our partners in many activities, from dexterous
factory jobs to assisted living. While working alongside
humans, a robot might encounter people performing vari-
ous social actions, and engaging in group activities, such
as exercise, or performing synchronous movements in
therapy [4]–[7]. Thus, robots need the ability to interpret,
anticipate, and adapt to human actions to synthesize fluent
interaction with humans accordingly.

There are many studies in the literature focused on
improving a robot’s motion through the interpretation of
human actions and activities [8]–[11]. These include a
wide range of behaviors, from gross motor motion (e.g.,
lifting stuff, walking together) to dexterous manipulation
tasks (e.g., stacking objects). All of these experiments
show successful results in recognizing human activities,
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Fig. 1. In the study, three participants danced together across three
conditions, A) humans alone, B) humans with one robot, and C) humans
with two robots. In B) and C), there were two variations, where different
anticipation algorithms were executed on the robot.

either when the humans performed as individuals or with
the collaboration of another human.

Recent work in robotics has focused on developing
methods which can predict human activity to make in-
teraction more fluent [12], [13]. For example, Hawkins
et al. [14] developed a probabilistic model to determine
an appropriate action for an assistive robot to take when
providing parts during an assembly task. Hoffman et al.
[15] proposed an adaptive action selection mechanism for
a robot to make anticipatory decisions based on the confi-
dence of their validity and relative risks. Their model was
validated through an experiment, and the results suggested
an improvement in joint task efficiency compared to a
purely reactive model.

Many approaches have been taken to model inter-
human joint action in groups, which has also been ex-
tended to human-robot synchronous group coordination
[16]–[23]. For example, Mörtl et al. proposed a step-wise
approach to model the inter-human movement synchro-
nization in a goal directed action task [24]. Iqbal and
Riek [25] proposed an event based method to measure
coordination in human groups, which was later extended
to human-robot groups [26], [27].

Lorenz et al. [28] investigated movement coordination
in a human-human and human-robot team. The study
involved both a human-human and human-robot dyad
tapping on two positions on a table at certain times. The
authors explored whether goal-directed, but unintentional
coordination of movement occurred during these interac-
tions. Their results suggested that humans synchronized
their movements with the movements of the robots.

While this prior work aims to enable robots to act
appropriately in a group, recent work has shown that
this may not be enough. Richardson et al. [29] found
that people show a higher degree of coordination of their
actions when they were visually coupled while interacting
in a group. The results of their study also suggested that
solely verbal interaction was an insufficient medium for
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unintentional coordination to occur during an interaction.
Moreover, verbal interaction did not enhance the uninten-
tional coordination that emerged during visual interaction.
Similarly, Coey et al. [2] investigated the relationship
between the stability of intrapersonal movement coordina-
tion and the emergence of the spontaneous interpersonal
coordination.

During human-robot group scenarios, the effect of
visual and auditory feedback from robots has not been
well explored beyond a human-robot dyad. However,
groups are a common domain in which humans and robots
will likely interact in the future, and how human and
robot group members influence one another may prove
important. Therefore, it is important to look deeply into
human-robot group dynamics, with an eye toward how
robots affect human group members’ behaviors when they
encounter intelligent robots working alongside them.

During the course of our research, we have designed
several methods to enable robots to autonomously engage
with human teams, by leveraging concepts from non-
linear dynamics and neuroscience (see [25], [27], [30]).
However, we are interested in exploring what happens
when multiple robots interact with multiple people si-
multaneously, and how they affects teaming behaviors.
Furthermore, what happens to the team when those robots
are running the same or different motion anticipation
algorithms?

To address these research questions, we have designed
a human-robot teaming scenario, where one or two
autonomous mobile robots observe a group of human
dancers, and then successfully and contingently coor-
dinates their movements to join the team. The robots
employed two methods to coordinate their movements
with the human group, one which takes team dynamics
into account and one which does not.

II. ANTICIPATION METHODS

As the testbed for this experiment, we designed a
synchronous dance scenario where a heterogenous team
of people and robots could coordinate their motion in
real-time. In concert with an experienced dancer, we
choreographed an iterative dance routine to the song
Smooth Criminal by Michael Jackson, which is in 4/4
time. There are four iterations in a dance session, and is
performed cyclically in a counter-clockwise manner. The
group performs this dance facing each of the cardinal di-
rections (North, West, South, and East) during an iteration.
Each iteration includes the dancers taking the following
steps in order: move forward and backward twice, clap,
and a counter-clockwise 90-degree turn [27].

We employed two event anticipation methods for
the robots to move within a human-robot group:
SIA (synchronization-index based anticipation) and ECA
(event cluster based anticipation) [27]. (See Fig 2).

A. Synchronization Index Based Anticipation (SIA)
While generating movements for the robots, the SIA

method depends on the internal dynamics of the group.

The main idea behind this method is that for a given iter-
ation, the participant who moves the most synchronously
with the other dancers is good for the robots to follow so
they are coordinated with the rest of the team. To generate
future actions for the robot using SIA, we measured the
most synchronous person of the group at the beginning of
each iteration [27].

We can express task-level events associated with two
dancers with time series xn and yn respectively, where
each time series has N samples and n = 1 . . . N . Suppose
mx and my are the number of events occurring in time
series x and y respectively. The events of both series
are denoted by ex(i) ∈ E and ey(j) ∈ E, where,
i = 1 . . .mx, j = 1 . . .my , and E is the set of all
events. The event times on both time series are txi and
tyj (i = 1 . . .mx, j = 1 . . .my) respectively [25].

In the case of synchronous dance, the dancers should
perform the movements roughly at the same time, or
within a time lag ±τ [25], [27]. Now, suppose cτ (x|y)
denotes the number of times a single type of event e ∈ E
appear in time series x shortly after it appears in time
series y. Here, cτ (x|y) =

∑mx

i

∑my

j Jτij , where, Jτij = 1,
if 0 < txi − t

y
j < τ , = 0.5, if txi = tyj , or = 0, otherwise.

Now, Qτ (e) represents the synchronization of events
in two time series, where we are only considering a
single type of event e in both time series [25]. From
cτ (x|y) and cτ (y|x), we can calculate Qτ (e) as, Qτ (e) =
(cτ (x|y) + cτ (y|x))/(√mxmy).

We can extend this notion of synchronization for mul-
tiple types of events. Suppose there are n types of events
{e1, e2, . . . , en} ∈ E(n), where E(n) is the set of all
types of events, and mx(ei) be the number of events of
type ei occurring in the time series x [25], [27]. The
overall synchronization of events in time series x and y
of that pair is:

∀ei ∈ E(n) : Qxyτ =

∑
[Qτ (ei)× [mx(ei) +my(ei)]]∑

[mx(ei) +my(ei)]
(1)

After measuring the pairwise synchronization index for
each pair, we built a directed weighted graph from these
indices, called a group topology graph (GTG), where each
time series is represented by a vertex [25], [27]. We
measured the individual synchronization index of series
si as:

Iτ (si) =

∑
j=1,...,H, j 6=iQ

sisj
τ × f(si, sj)∑

j=1,...,H, j 6=i f(si, sj)
(2)

Here, f(si, sj) = 1, iff edge(si, sj) ∈ GTG, or = 0,
otherwise.

A high individual synchronization index of a dancer
indicates close synchronization with the other group mem-
bers. Thus, the person with the highest individual synchro-
nization index during an iteration is considered the most
synchronous person of the group [27].



Fig. 2. Two anticipation methods. Left: Synchronization Index Based Anticipation (SIA) method, Right: Event Cluster Based Anticipation (ECA)
method [27].

B. Event Cluster-Based Anticipation Method (ECA)

ECA was designed to serve as a comprable algorithm
which does not take group dynamics into account, is
theoretically simple, and is easy to implement. The core
idea of ECA is that it takes the average timing of events
during one iteration to predict the timing of those same
events for the next iteration [27].

For example, given a single event e, ECA calcu-
lates the timing of the event performed by three human
participants, i.e., t(dancer1(itri), e), t(dancer2(itri), e),
t(dancer3(itri), e). Here, t represents the timing of an
event, and itri represents the iteration i. Then, for each
cluster of similar events occurred within a time threshold
ε, ECA calculates the average time of all events and
used that time as the event timing for the next iteration.
These events and the times were the predicted events and
timing for the next iteration of the dance for the robot.
Thus, t(robot(itr(i+1)), e) = (t(dancer1(itri), e) +
t(dancer2(itri), e) + t(dancer3(itri), e))/3 [27].

III. DATA ACQUISITION

In the experiment, four clients with Microsoft Kinect
v. 2 sensors captured motion of the team, and detected
dance events in real-time. A server managed the clients
and closely maintained a consistent time across them and
the robots [27].

Each client extracted five high-level events from each
participant’s movements during the dance: start moving
forward, stop moving forward, start moving backward,
stop moving backward, and clap. (The detection process
is described in [27]). After receiving client events, the
server used the anticipation methods described in Sec-
tion II to generate appropriate movement commands for
the robot. These commands included: move forward, move
backward, stop, and turn.

The server translated the clap commands into rotation
commands for the robot, since the robot cannot clap.
Each iteration ended with a synchronous clap by the
participants. The last participant clap time was taken as
the end time, and the starting time of the next iteration
[27].

IV. EXPERIMENTS

We first performed a series of pilot studies to test
the experimental testbed, and set the parameters for the
two anticipation methods. Then, we performed the main
experiment to address the research questions.

A. Pilot studies

We conducted two sets of pilot studies, with a total of
seven participants (three women, four men). Participants
were opportunistically recruited, and compensated with a
$5 gift card for participating. During the first set, a sole
participant danced with the robot. We sought to measure
two things: how fast the robot received action messages,
and how accurately the robot performed with the human
participant. During the second set of pilot studies, a
group of three participants danced with the robot. Here,
we sought to establish appropriate parameters for the
anticipation methods. Results from the pilots showed that
the robot received messages from the server within a
timely manner, and the robot was moving synchronously
with participants.

B. Main experiment

To explore the effects of visual and auditory feedback
from the robots during an intentional coordination task,
we physically incorporated robot(s) in the group in such a
way that participants were able to hear the robot’s motors
at all times, and view a robot during some iterations
(See Fig 1). This scenario provided the opportunity to
investigate the effect of robot motion (including auditory,
and visual feedback) on the group’s coordination.

We also provided an external rhythmic signal to partici-
pants to help them to maintain a consistent, synchronized
tempo during the dance. Participants were instructed to
maintain awareness of the other participants’ and robots’
movements, and to dance synchronously as a group.

We recruited a total of seven groups for our main
study, with three people per group. Data of one group
were excluded due to the robot losing connectivity with
the server, so here we report the results from six groups
(18 participants in total). 11 participants were women, 7
were men. Their average age was 24.7 years (s.d. = 4.5
years), and the majority were undergraduate and graduate



students. Participants were recruited by word-of-mouth.
Upon scheduling a time slot, participants were randomly
assigned to join a group with two others. Each participant
was compensated with a $10 gift card.

After giving informed consent, participants viewed an
instructional video of the choreographed dance and the
experimenters explained the different movements. The
participants then had time to practice the dance move-
ments as a group as many times as they wanted. During
the practice session, the robot did not dance with them.
Following the practice session, the group participated in
six dance sessions, in four phases.

1) Phase 0: During the first phase of the dance ses-
sions, only the humans participated in the dance.

2) Phase 1: During the second phase of the dance
sessions, one robot joined the group. The dancers
participated in two dance sessions during this phase,
where the robot moved using either ECA then SIA,
or SIA then ECA. The order was counterbalanced
to avoid bias within this phase.

3) Phase 2: During this phase, two robots joined the
dance with the humans. The dancers also partici-
pated in two dance sessions during this phase, with
either SIA or ECA methods controlling the robot’s
movements. The order was counterbalanced to avoid
bias within this phase.

4) Phase 3: During the last phase, two robots moved
with the humans. However, movements of one robot
were generated using ECA, and movements of the
other robot were generated using SIA. The antici-
pation methods for the robots were counterbalanced
to avoid bias.

We controlled for several factors relating to how partic-
ipants altered their behaviors relative to the robots’ motion
in several ways. First, we provided an external rhythmic
signal to the human participants to help them maintain a
consistent tempo. Second, we deliberately choreographed
an easy dance (walking, turning, and clapping), and gave
substantial practice time before the experiment began.
This enabled participants to develop their muscle memory,
so that they would not be easily distracted during the
experiment. Third, because we had six counterbalanced
conditions (i.e., random ordering per phase for each par-
ticipant group), any effects relating to the robots being
distracting will be greatly lessened.

During all sessions, the clients recorded depth, infrared,
and skeletal data of the participants, and the server logged
all event and timing data. A single camera mounted on a
tripod recorded standard RGB video of the experiment for
manual analysis purposes only. Following each session,
participants completed a short questionnaire asking them
to rate in a discrete visual scale describing how well-
synchronized the group was during that dance session.

We used two Turtlebot v.2 robots in our experiments.
Our Turtlebots are approximately 2 feet tall, and run
the Robot Operating System (ROS) (Hydro) on Ubuntu

(version 12.04). The robot is capable of forward and
backward movement, and can rotate on its vertical axis
in either direction.

V. ANALYSIS AND RESULTS

To address the first two research questions, we need
to measure how well coordinated the human participants’
movements are when we consider them separate from
the group, without the robots. In order to address the
research questions three and four, we need to measure how
well coordinated the whole group are including both the
humans and the robots. Here, we describe the method to
measure the degree of synchronization among the group.

During the experiments, the humans and the robots
physically moved very close in proximity. Therefore, we
assumed that each group members influenced all other
group members, as well as everyone was influenced by all
other group members. Thus, each member was considered
connected with all other members in the GTG [27].

However, when SIA method was used, the robot only
followed the most synchronous person of the previous
iteration. Thus, we only took the pairwise synchronization
index between the robot and that person into account
while building the GTG and calculating the individual
synchronization index of the robot for that iteration [27].

From the GTG, we measured the connectivity value
(CV ) and the overall group synchronization index (Gτ ),
both by including and by excluding the robot [27].

CV (si) =

∑
j=1,...,H, j 6=i f(si, sj)

H − 1
(3)

Gτ =

∑
i=1,...,H Iτ (si)× CV (si)

H
(4)

The value of τ allowed us to detect two synchronous
events when the events happened within τ in two time
series. From the pilot studies, we found that even when
the humans performed their actions synchronously, the lag
between their actions ranged from 0.25-0.6 sec. So, to be
conservative, we selected τ as 0.25 sec. The events of
the robots were detected from the timestamped odometric
data from the robots [27].

To address our research questions, we measured both
the group synchronization index only considering the
human participants (GSI(H)) across all experimental ses-
sions, as well as the group synchronization index of the
whole group (GSI(G)). First, we analyze the effect on the
group synchronization index only considering the human
participants for different experimental scenarios. Then, we
analyze the effect on the whole group synchronization
index for different experimental scenarios.

1) Effect on the GSI(H) values: We conducted an
one-way repeated-measures ANOVA with the Bonferroni
correction on the human group synchronization index
(GSI(H)) values of all six experimental sessions, consist-
ing of one session of Phase 0, two sessions of Phase 1,
two sessions of Phase 2, and one session of Phase 3.



Fig. 3. The group synchronization index (GSI) values for different group conditions along x-axis, where 3H means 3 humans, 1R means 1 robot,
2R means 2 robots, SIA means synchronization index based anticipation, and ECA means event cluster based anticipation. The graphs on the left
shows the GSI values of the human group, and the right shows the GSI values of the whole group. The significant difference in GSI values between
groups are shown in * (* = p < 0.05, ** = p < 0.01, and *** = p < 0.001)

Mauchly’s test indicated that the assumption of spheric-
ity had been met, χ2(14) = 9.38, p > 0.05. One-way
repeated-measures ANOVA with the Bonferroni correction
indicated that the human group synchronization indices
were not significantly different across all experimental
conditions, F(5, 115) = 1.37, p > 0.05, ω2 = 0.03. These
results suggest that the human group synchronization
index was not affected by adding one or more robot as
a performer to the group, irrespective of the anticipation
algorithms. Fig 3 shows errors bars of GSI(H) values
across all experimental conditions.

2) Effect on the GSI(G) values: We conducted an
one-way repeated-measures ANOVA with the Bonferroni
correction on the whole group synchronization index
(GSI(G)) values of all six experimental sessions, consist-
ing of one session of Phase 0, two sessions of Phase 1,
two sessions of Phase 2, and one session of Phase 3.

Mauchly’s test indicated that the assumption of spheric-
ity had been met, χ2(14) = 18.56, p > 0.05. One-way
repeated-measures ANOVA with the Bonferroni correction
indicated that the group synchronization indices (GSI(G))
across the experimental conditions were significantly dif-
ferent, F(5, 115) = 22.59, p < 0.05, ω2 = 0.21.

These results also suggest that the GSI(G) values of
the Session1 were significantly different than all other
experimental conditions (for all conditions p < 0.001).
This indicates that there is a change in the degree of
group synchronization when one or more robots joined
the group, independent of the anticipation algorithms.

The results also indicate that the GSI(G) values of the
sessions of Phase1 were not significantly different than
the sessions of Phase2 (for all conditions p > 0.05).
It suggests that there is no significant effect on the GSI
values when we add an additional robot to a three human
and one robot group of the same robot behavior, regardless
of the robot anticipation algorithms.

However, the results also indicate that the GSI(G)
values of the sessions of Phase1 were significantly

different than the session of Phase3 (p < 0.05 for SIA
method of Phase1 and Phase3, and p < 0.001 for ECA
method of Phase1 and Phase3). This suggests that there
is a significant effect on the GSI values when we add
an additional robot with different behavior to the group,
regardless of the robot anticipation algorithms.

Our results also indicate that the GSI(G) values of
the session of Phase2 when the SIA algorithm was
used were not significantly different than the session
of Phase3 (p > 0.05). However, the GSI(G) values of
the session of Phase2 when the ECA algorithm was
used were significantly different than the GSI values of
the session of Phase3 (p < 0.01). This suggests that
there is no significant effect on the GSI values when the
both robots were performing SIA and when the robots
performed a mixed behavior. On the other hand, there is
a significant effect on the GSI values when the both of
the robots were performing ECA and when the robots
performed a mixed behavior. Fig 3 shows the errors bars
of GSI(G) values across all experimental conditions.

VI. DISCUSSION

To our knowledge, intentional coordination tasks have
not been explored in the context of multi-human, multi-
robot group interaction scenarios. Our study explored how
robots might change this dynamic in intentional group
coordination. Our results indicate that heteronegenous be-
havior of robots in a multi-human multi-robot group have
a significant impact on the overall group coordination.
This is an important finding, because this indicates that
the way the robots move in a multi-human multi-robot
group may directly impact the dynamics of the whole
group, which raises an important concern about how we
must design robots to perform along with humans in
coordination to achieve common goals.

Our statistical analysis indicates that the addition of
a second robot with heterogeneous behavior (Phase 3)
significantly reduces the group coordination over a single



robot condition (Phase 1). Similarly, the analysis suggests
that an addition of a robot to the human-only group
also significantly reduces the group coordination over the
human-only group (Phase 1 vs. Phase 0). This is an
important finding, because the addition of a robot with
same behavior does not change the group coordination
significantly (Phase 1 vs Phase 2, for both algorithms).
These results might suggest that an addition of a robot
with heterogeneous behavior to a group significantly re-
duces the overall group coordination, and might be an
important indicator of human-robot group dynamics.

Although participants were overall more synchronous
by themselves than with the entire human-robot team, this
does not mean the team was grossly asyncronous. Instead,
it may simply mean that due to physical factors, such
as sensor noise or network lag, the robots occasionally
moved slightly sooner or later than they should have.
(However, the humans do not have this issue and are able
to maintain conssiten, real-time temporal adaptaiton (c.f.
[31])). This is something we plan to explore in future
work, by incorporating a large error epsilon.

We can also extend our method to work beyond syn-
chronous activities, such as timed but varied collaborative
tasks. For example, a human-robot team working in an
industrial setting has specific sequences of activities to
perform over time, some of which might be independent,
and might not have to happen synchronously. However,
the events do have to happen contingently; so we can
extend our methods to apply during these scenarios.

This research may be helpful for others in the robotics
community in exploring novel concepts that affect group
dynamics beyond dyad groups. As a whole, humans have
complex social structures, and it is necessary for robots
to understand these underlying concepts if they are to
become widely accepted. This work also has implications
not only for human-robot interaction, but also for multi-
robot systems research, such as robot swarms.

Building on this foundation, we want to explore the
effect of including multiple types of robots with different
expertise levels in a human-robot group to perform both
intentional and unintentional coordinated movements. We
are also interested to explore how different robot mor-
phologies (like humanoids) might affect group synchrony.
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[24] A. Mörtl, T. Lorenz, and S. Hirche, “Rhythm patterns interaction-
synchronization behavior for human-robot joint action,” PloS one,
2014.

[25] T. Iqbal and L. D. Riek, “A Method for Automatic Detection of
Psychomotor Entrainment,” IEEE T on Affective Computing, 2015.

[26] T. Iqbal, M. J. Gonzales, and L. D. Riek, “Joint action perception
to enable fluent human-robot teamwork,” in IEEE RO-MAN, 2015.

[27] T. Iqbal, S. Rack, and L. D. Riek, “Movement coordination
in human-robot teams: A dynamical systems approach,” IEEE
Transactions on Robotics, 2016.

[28] T. Lorenz, a. Mortl, B. Vlaskamp, a. Schubo, and S. Hirche, “Syn-
chronization in a goal-directed task: human movement coordination
with each other and robotic partners,” Proc. IEEE RO-MAN, 2011.

[29] M. J. Richardson, K. L. Marsh, and R. C. Schmidt, “Effects
of Visual and Verbal Interaction on Unintentional Interpersonal
Coordination.” J. Exp. Psychol. Hum. Percept. Perform., 2005.

[30] T. Iqbal, M. Moosaei, and L. D. Riek, “Tempo Adaptation
and Anticipation Methods for Human-Robot Teams,” in Proc.
of Robotics: Science and Systems (RSS), Planning for Human-
Robot Interaction: Shared Autonomy and Collaborative Robotics
Workshop, 2016.

[31] M. C. M. van der Steen and P. E. Keller, “The ADaptation and
Anticipation Model (ADAM) of sensorimotor synchronization.”
Front. Hum. Neurosci., 2013.




